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Abstract

This paper deals with the fracture mechanics of piezoelectric solids. All investigations consider a single crack, which is exposed to
combined electrical and mechanical loading. The main subject of interest is the influence of electric fields on the fracture toughness
of ferroelectric ceramics and the derivation of an appropriate fracture criterion. Numerical techniques are presented, allowing for

the calculation of fracture quantities, i.e. stress intensity factors and energy release rates, once the piezoelectric field problem has
been solved for arbitrary crack configurations using the finite element method. In order to describe a possible shielding of the crack
tip due to ferroelectric/elastic domain switching events, a micromechanical model has been developed, based on a closed form

solution of the piezoelectric field problem. In order to verify the theory, fracture experiments on barium titanate DCB specimens
have been evaluated and compared to predictions of the model.
# 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When problems of optimum performance and mate-
rial processing are solved, the sucess of smart structures
with integrated functional ceramics essentially depends
on their strength and reliability. Because of the intrinsic
brittleness of piezoelectric ceramics, cracks play an
important role by drastically reducing the fracture
strength and fatigue limits. Since all non-elastic pro-
cesses are restricted to regions around the crack tip,
which are small compared to relevant crack lengths, the
concepts of linear elastic fracture mechanics1,2 (LEFM)
are applied in our investigations. The state of the art in
linear piezoelectric fracture mechanics has recently been
compiled by Zhang et al.3 and by Qin.4

In general, the smart ceramics are exposed to both
mechanical and electrical loads causing stresses and
electric displacements in the body. At crack tips these
fields show a 1=

ffiffi
r

p
singularity,5,6 where r denotes the

distance from the crack tip, see Fig. 1. The local
asymptotic distributions of stresses �ij and electric dis-

placements Di are qualitatively identical at all crack tips.
Following the classical K-concept, the crack tip fields
can be expressed in terms of stress intensity factors KI,
KII and KIII, corresponding to the three mechanical
crack opening modes, and an electric intensity factor
KIV:

lim
r !0

�ij r; �ð Þ

¼
1ffiffiffiffiffiffiffiffi
2�r

p KI f
I
ij �ð Þ þKII f

II
ij �ð ÞþKIII f

III
ij �ð Þ þ KIV f IV

ij �ð Þ

h i

lim
r !0

Di r; �ð Þ

¼
1ffiffiffiffiffiffiffiffi
2�r

p KIg
I
i �ð Þ þ KIIg

II
i �ð Þ þ KIIIg

III
i �ð Þ þ KIVg

IV
i �ð Þ

� �
ð1Þ

In Eq. (1) � is the polar angle around the crack tip,
fij(�) and gi (�) are angular functions characterising the
asymptotic near field distribution. They depend on the
orientation of the crack in the anisotropic material and
on the crack opening modes. Besides the four intensity
factors, the loading of the crack tip can be described by
an energy release rate G. It is defined as the change of
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the total energy � of the cracked body related to an
incremental growth of the crack area �A:

G ¼ � lim
�A !0

��

�A

� �
¼ �

d�

dA
ð2Þ

The energy release rate and the intensity factors can
be related by the equation5

G ¼
1

2
KII;KI;KIII;KIVð ÞY C; e;�ð Þ

KII

KI

KIII

KIV

0
BB@

1
CCA ð3Þ

with a generalised Irwin matrix Y, which is a function of
elastic, piezoelectric and dielectric material tensors C, e
and � as well as the orientation of the crack with respect
to the material axes.
In order to evaluate the strength of a cracked struc-

ture, relevant fracture quantities have to be related to a
critical, material inherent value. Generally, a fracture
criterion can be formulated by an equation of the kind

B KI; . . . ;KIVð Þ ¼ BC �a;KI; . . . ;KIVð Þ ð4Þ

In Eq. (4), the fracture quantity B represents the
applied loading side, which can be expressed in terms of
the intensity factors. In the single mode case, the corres-
ponding stress intensity factor or the energy release rate
are chosen for B. In mixed mode fracture mechanics, the
fracture criterion is more complicated and in the case of

electromechanical loading still unknown. The critical
value BC on the right hand side of Eq. (4) is material
dependent, although not necessarily constant. In this
connection microstructural effects within the fracture
process zone may play an important role.7,8 The process
zone is a small region around the crack tip, where all
irreversible processes going along with fracture take
place. In ferroelectrics the fracture process zone is
dominated by domain switching.9,10 These micro-
structural effects may, for example, cause a dependence
of BC on the crack growth �a (R–curve effect). More-
over, the material resistance may depend on the crack
tip fields �ij and Di, controlling the microstructural
effects within the process zone. According to Eq. (1) the
crack tip fields are uniquely determined by the intensity
factors KI,. . .,KIV.
In this paper, we first present an analytical solution

of the coupled piezoelectric field problem of a cracked
body, yielding all crack tip fields, fracture quantities
and crack weight functions, respectively. Afterwards,
numerical methods, which have been developed for the
calculation of field intensity factors and energy release
rates are presented. They can be applied to the fracture
mechanics analysis of arbitrary cracks in piezoelectric
structures as well as to the evaluation of electro-
mechanical fracture experiments. As an example,
experiments with double cantilever beams (DCB) made
of poled barium titanate are presented and analysed.
Driven by a wedge, a mechanically loaded crack is
propagated stably for several millimeters. During crack
growth, an electric field is switched on and off, to
investigate the influence of electric loads on the frac-
ture quantities. To understand the observed effects, a
micromechanical model of the fracture process zone,
based on the analytical framework is developed. The
influence of small scale ferroelectric/elastic domain
switching on the fracture toughness is investigated giv-
ing insight into the right hand side of the fracture cri-
terion, Eq. (4). The results are compared to
experimental findings.

2. Analytical framework of piezoelectric fracture

2.1. Closed form solution of the piezoelectric Griffith
crack problem

The subject under consideration is a through-thick-
ness crack with a length 2a in an infinitely wide piezo-
electric plate exposed to remote stresses and electric
displacements, see Fig. 1. The point loads F1, F2, F3 and
Q are disregarded for the moment. The Stroh formalism
is applied to solve the anisotropic, electromechanical
field problem, yielding stresses �ij, electric displacements
Di, mechanical displacements ui and the electric poten-
tial � within the cracked body, see.11

Fig. 1. Griffith crack with remote loads �1
i2 , D

1
2 and point loads F1,

F2, F3 and Q.
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The strain tensor "ij and the electric field vector Ei can
be introduced as:

"ij ¼
1

2
ui;j þ uj;i
� �

Ei ¼ ��;i ð5Þ

The governing equations are those of linear elasto-
statics and electrostatics:5,6

�ij;j þ bi ¼ 0

Di;i � !V ¼ 0 ð6Þ

Volume loads bi and volume charges !V will be
neglected in the following. The constitutive behavior of
piezoelectric materials is described by

�ij ¼ Cijkluk;l þ eijl�;l

Di ¼ eikluk;l � 	il�;l ð7Þ

with the elastic, piezoelectric and dielectric material
tensors Cijkl, eijl and kil, respectively. Inserting Eq. (7)
into Eq. (6) yields a set of partial differential equations
describing a general piezoelectric field problem in terms
of displacements and potentials. To solve these equa-
tions the displacements and the electric potential are
represented by the function

uN ¼
ui
�

� �
¼

Ai

A4

� �
f zð Þ ¼ AN f zð Þ; z ¼ x1 þ px2 ð8Þ

Here, the mechanical displacements and the electric
potential are collected in the matrix uN. It will be
agreed that indices in capital letters comprise the four
fracture modes {II, I, III, IV}, thus running over {1, 2,
3, 4}. The variable z allows ui and � to depend on the
coordinates x1 and x2. Since derivatives with respect to
x3 disappear, the strain "33 and the electric field inten-
sity E3 are zero [Eq. (5)]. Applying Eq. (8) yields a
generalised eigenvalue problem with eigenvalues p and
eigenvectors AN. The characteristic equation is a poly-
nomial of 8th degree, which requires numerical solu-
tion. Since the coefficients of the characteristic
polynomial, being functions of material constants, are
real, the roots yield four conjugate complex pairs of
eigenvalues. The corresponding conjugate complex pairs
of eigenvectors AN are linear independent in most cases
of interest.
In order to obtain a solution in terms of stresses and

electric displacements, Eq. (8) is inserted into the con-
stitutive equations, Eq. (7). To calculate the fields in a
cracked body, the function f(z) in Eq. (8) has to be spe-
cified in terms of boundary conditions, see Fig. 1.
Across the ligament (x2=0, |x1|>a) all fields are sup-
posed to be continuous. On the crack faces (x2=0,
|x1|<a) stresses and electric displacements are denoted

by �S
i2 and the surface charge density DS

2 . Considering
these boundary conditions, the function f(z) is deter-
mined applying the Fourier transformation yielding two
sets of dual integral equations, which are solved follow-
ing Pohanka and Smith.12 The results for stresses and
electric displacements are13

�i1

D1

� �
¼ �R MM�N�Np� z2� � �2

� ��1
2z� � 1

h in o
TN

�i2

D2

� �
¼ R MM�N�N z2� � a2

� ��1
2z� � 1

h in o
TN ð9Þ

where R . . .f g denotes the real part. The index � is
introduced to take into account the summation over the
number q of linear independent eigenvectors (q44). The
matrix MM� only depending on material properties is
defined:

MM� ¼
Ci2k1þCi2k2p�ð ÞAk� þ ei12 þ ei22p�ð ÞA4�

e2k1 þ e2k2p�ð ÞAk� � 	21 þ 	22p�ð ÞA4�

� �
ð10Þ

and N�N is the inverse of MM�. The vector TN

= �S
i2;D

S
2

� �T
expresses the fields on the crack faces.

Displacements and the electric potential are derived
from Eq. (8):

ui
�

� �
¼ R AM�N�N z2� � �2

� �1
2�z�

h in o
TN ð11Þ

Eqs. (9) and (11) provide the complete mechanical
and electrical field distributions around a crack due to
loads acting on the crack faces. Moreover, it can be
applied to the solution of the boundary value problem
shown in Fig. 1 with remote loads �1

i2 and D1
2 . Fur-

thermore, different crack boundary conditions, i.e. the
influence of electric fields within the opened crack can
be taken into account. The equilibrium of charge den-
sities ! ¼ �Dini and stresses ti ¼ �ijnj on the crack faces
(n1=n3=0) requires

�S
i2 ¼ �1

i2 � �C
i2

DS
2 ¼ D1

2 �DC
2

ð12Þ

�C
i2 and Dc

2 denote fields within the crack at the inter-
face to the piezoelectric material. Free surface charges
and tractions on the crack faces have been neglected.
Following the superposition principle, in Eq. (12) the
remote loads have been expressed by equivalent loads
on the crack faces, which are identical with �1

i2 and D1
2

in this simple case. The medium within the crack is
supposed not to have any elastic properties, therefore
�C
i2 will be neglected in the following. The charge density

DC
2 takes into account the finite electric permeability of

the crack. Neglecting DC
2 makes the crack impermeable

with respect to electric fields.
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Introducing polar coordinates r, � (see Fig. 1), the
asymptotic fields around the crack tip can be derived
from Eqs. (9) and (11) for r!0:

�i1
D1

� �
¼ �

ffiffiffiffiffi
a

2r

r
R MM�N�N

p�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos� þ p�sin�

p
( )

TN

�i2
D2

� �
¼

ffiffiffiffiffi
a

2r

r
R MM�N�N

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos� þ p�sin�

p
( )

TN

ui
�

� �
¼

ffiffiffiffiffiffiffi
2ar

p
R AM�N�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos� þ p�sin�

pn o
TN ð13Þ

2.2. Calculation of field intensity factors and the energy
release rate

The field intensity factors KI, KII, KIII and KIV for a
Griffith crack in a piezoelectric material under electro-
mechanical loads can be derived from the near tip solu-
tions, Eq. (13). Comparing Eqs. (1) and (13) yields

KN ¼

KII

KI

KIII

KIV

0
BB@

1
CCA ¼

ffiffiffiffiffiffi
�a

p

�1
12

�1
22

�1
32

D1
2 �DC

2

0
BBB@

1
CCCA ¼

ffiffiffiffiffiffi
�a

p
TN ð14Þ

whereby the angular functions f Lij �ð Þ (superscript L
� II; I; III; IVf g) correspond to the R . . .f g terms in Eq.
(13). The energy release rate G is calculated applying the
crack closure integral.3,4,6 A crack is considered which
has grown by the amount �a, see Fig. 2. A polar co-
ordinate system (r, �) is introduced with its origin at the
tip of the original crack a. The specific work, which is
necessary to close the crack at the location (r=s, �=0)
is approximately

dW

ds
�
1

2
�2i s; 0ð Þ�ui �a� s; �ð Þ

þ
1

2
D2 s; 0ð Þ�� �a� s; �ð Þ ð15Þ

with �ui ¼ uþi � u�i and �� ¼ �þ � �� as the difference
of the displacements and the electric potential on the
positive and negative crack faces. The stresses �2i and
the electric displacements D2 are those on the ligament
before the crack growth. To be exact, the displacements
and the potential would have to be taken from the
grown crack at (s, 0). Nevertheless, if �a is small with
respect to the total crack length a, all field variables may
approximately be calculated for the original crack
length a. In this case displacements and potentials have
to be taken at r=�a�s. Since the total crack closure
work �W along �a equals ���, the energy release rate
can be calculated from Eqs. (2) and (15):

G ¼ lim
�a !0

1

2�a

ð�a

0

½�2i s; 0ð Þ�ui �a� s; �ð Þ

þD2 s; 0ð Þ�� �a� s; �ð Þ�ds ð16Þ

The jumps of the displacements �ui and the electric
potential �� over the crack faces as well as the stresses
�2i and electric displacements D2 are determined from
Eq. (13). Thus, the energy release rate gives

G ¼ �aTMJ AM�N�Nf gTN lim
�a !0

1

a

ð�a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a� s

s

r
ds ¼

¼ �
�a

2

�1
i2

D1
2 �DC

2

� �
J AM�N�Nf g

�1
i2

D1
2 �DC

2

� �
ð17Þ

where J{. . .} means the imaginary part. In Eq. (3) the
Irwin matrix has been introduced, relating intensity
factors and the energy release rate. Taking into account
Eqs. (14) and (17), the Irwin matrix is found to be

YMN ¼ �J AM�N�Nf g ð18Þ

For a piezoelectric material, being transversly iso-
tropic with the poling direction parallel or perpendi-
cular to the crack faces, the Irwin martix can be
expressed by three independent elastic constants cT, cL
and cA as well as one piezoelectric e and one dielectric
constant 	 (see Appendix B).

2.3. Piezoelectric weight functions

The derivation of anisotropic weight functions

hLN ¼
�1

2
ffiffiffiffiffiffi
�a

p Y�1
LMR AM�N�N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z� þ a

z� � a

r� �
ð19Þ

for piezoelectric materials can be followed in Appendix
A. By means of Eq. (19) the field intensity factors due to
point forces and charges (see Fig. 1) at any location xi
can be calculated for a Griffith crack in an anisotropic,
piezoelectric material:

Fig. 2. Illustration of crack growth for the derivation of the crack

closure integral.
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KL ¼

KII

KI

KIII

KIV

0
BB@

1
CCA ¼ hLN xið ÞFN ¼ hLN xið Þ

F1
F2
F3
Q

0
BB@

1
CCA ð20Þ

According to the linear superposition principle, arbi-
trary load configurations can be transformed into
equivalent loads on the crack faces. Therefore Eq. (19)
can also be used to calculate field intensity factors due
to arbitrary loads considering point loads on the crack
faces, where z� ¼ x1. Because of x1�a<0 the weight
functions hLN for the crack faces are

hLN ¼ �
�1

2
ffiffiffiffiffiffi
�a

p Y�1
LM

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ x1
a� x1

r
R �iAM�N�Nf g

¼ �
1

2
ffiffiffiffiffiffi
�a

p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ x1
a� x1

r

LN ð21Þ

The Irwin matrix has been eliminated using Eq. (18).

LN is the L�N unit tensor. Across the crack faces, the
weight functions change their sign. The field intensity
factors are calculated according to Eq. (20), inserting hLN
from Eq. (21) and adding the contributions from both
crack faces. Distributed loads are taken into account by
integrating along x1 between the two crack tips:

KL ¼
1

2
ffiffiffiffiffiffi
�a

p 
LN

ða
�a

Tþ
N x1ð Þ � T�

N x1ð Þ
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ x1
a� x1

r
dx1 ð22Þ

Considering the special case of uniform loads TN ¼

�1
i2 ;D

1
2

� �T
6¼ f x1ð Þ at infinity, see Fig. 1, the intensity

factors calculated from Eq. (22) coincide with those
from Eq. (14). In Eq. (22) finite electrical permeability
of the crack can be taken into account including a
surface charge density DC

2 according to Eq. (12). In
contrast to Eq. (14), these charges may be a function of
x1, allowing for a more accurate modelling of crack
permeability.
For the investigation of the fracture process zone,

crack tip weight functions will be of interest. Therefore,
Eq. (19) is transformed into the polar coordinate system
(r, �), see Fig. 1. For small radii r, the crack tip weight
functions are

hLN ¼
�1ffiffiffiffiffiffiffiffi
2�r

p Y�1
LMR AM�N�N

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos� þ pasin�

p
( )

ð23Þ

Fig. 3 shows the four intensity factors due to a unit
point force at (r=10�3 m, �), which have been calculated
using the weight functions according to Eq. (23). Both
load vector and material polarisation are orientated per-
pendicular to the crack faces pointing to the positive x2-
direction. The material data are those of barium titanate
(see Appendix B). The dotted graph represents KI for an
isotropic elastic body with �=0.315 and

hI
i ¼

1

2
ffiffiffiffiffiffiffiffi
2�r

p
1� �ð Þ

�

cos
�

2

� �
2�� 1þ sin

�

2

� �
sin

3�

2

� �� �

sin
�

2

� �
2� 2�� cos

�

2

� �
cos

3�

2

� �� �
0
BB@

1
CCA ð24Þ

as the isotropic weight function for the Mode-I case.
Eq. (24) is derived from a more general formulation by
Erdogan.14 If the load is on the ligament (�=0), KI and
KIV vanish, whereas KII is finite. Due to the plane strain
conditions, KIII is zero for all angles �. If the load is on
the crack faces (�=��) only KI is finite. On the positive
crack face (�=+�), the positive force effects a crack
opening, on the negative crack face (�=��) a crack
closure is observed. Comparing KI for the isotropic and
the piezoelectric cases, the results show little difference
for the chosen material constants.

3. Numerical calculation of fracture quantities

In the following, three methods are presented, allow-
ing for the calculation of field intensity factors and the

Fig. 3. Field intensity factors due to a unit point load at (r=10�3 m,

�). Load and polarisation perpendicular to the crack faces.

Fig. 4. Singular crack tip elements with nodes shifted in the 1/4 position.
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energy release rate. All methods can be implemented as
post processors based on output data of a finite ele-
ment calculation of the electromechanical boundary
value problem. The results obtained from the different
methods have been compared15,16 and their accuracy
proved.

3.1. Singular crack tip elements (CTE method)

The stress intensity factors can be calculated using
the asymptotic solutions for the crack tip displace-
ments ui and the electric potential �. It is convenient to
consider the discontinuity of the fields across the crack
faces

lim
r !0

�uM ¼ lim
r !0

�ui
��

� �
¼

ffiffi
r

p
ffiffiffi
8

�

r
YMNKN ð25Þ

where �uM ¼ uþM � u�M denotes the difference of the
field variables on the positive and negative crack faces
and the matrix KN, according to Eq. (14), contains all
four intensity factors. In Eq. (25), the analytical solu-
tions on the crack faces, see Eq. (13), are represented in
terms of the Irwin matrix, see Eq. (18).
The intensity factors KN will be determined from

Eq. (25) inserting displacements ui and electric poten-
tials � from the numerical solution of the specific
boundary value problem. Therefore, special crack tip
finite elements are introduced, accounting for the

ffiffi
r

p
–

behaviour by construction. This kind of elements has
been suggested first by Barsoum17 for the pure
mechanical case. Fig. 4 shows the discretisation of the
positive crack face and a part of the ligament with
four triangular elements arranged arround the crack
tip, which lies at node A. For the sake of simplicity, a
2D grid was chosen in Fig. 4. These special triangular
elements are constructed by collapsing one edge of a
regular 8-node rectangular element and shifting two
mid-edge nodes to the 1/4-position, as depicted in Fig. 4.
On the negative crack face the crack tip region is
meshed the same way, whereas the rest of the finite ele-
ment model is discretisised with regular 8-node rectan-
gular elements. In the 3D case, the finite element mesh
around the crack front consists of singular pentahedron
elements and regular hexahedron elements.
With the specific shape functions of the quarter point

elements18 the discontinuity of the fields across the
crack faces can be expressed for r ! 0:

�uM ¼

ffiffiffiffi
r

L

r
4�uM Bð Þ � �uM Cð Þ
� �

ð26Þ

with the element length L and uM at nodes B and C, see
Fig. 4. Inserting Eq. (26) into Eq. (25) finally yields the
field intensity factors:

KM ¼

ffiffiffiffiffiffi
�

8L

r
Y�1

MN 4�uN Bð Þ � �uN Cð Þ
� �

ð27Þ

For 2D calculations Eq. (27) is applied with �u3=0,
yielding KI, KII and KIV. For 3D calculations the crack
front is meshed with a tube of pentahedron elements. In
this case Eq. (27) is applied locally along the crack
front.

3.2. The modified crack closure integral (MCCI
method)

The calculation of the energy release rate G by the
crack closure integral has been presented in Eq. (16).
The numerical determination of G applying the MCCI
technique has first been realised by Buchholz19 for the
pure mechanical case. The electromechanical general-
isation has been investigated by different authors.18,20,21

For the numerical realisation of Eq. (16), stresses and
electric displacements are replaced by nodal forces Fi

and charges !, respectively. Instead of the integration, a
summation over the nodes within �a is performed,
accounting for displacements and electric potentials at
the corresponding nodes on the crack faces. A good
performance was found18 setting �a equal to an element
length L. For 8-node rectangular elements two node sets
have to be taken into account, see Fig. 2:

G ¼
1

2L
F�
i �u��2i � !�����2þF�þ1

i �u��1i � !�þ1����1
� �

ð28Þ

In the 2D case, the energy release rate G=GI+GII+
GIV is calculated from F1, F2 and ! (i=1,2). If a 3D
crack configuration is considered, there is an additional
term GIII from F3 and �u3. In this case, corresponding
node sets have to be considered along the crack front
for the calculation of local energy release rates. �a in
Eq. (28) is then replaced by local areas of crack exten-
sion �A. In the case of a curved crack front, the areas
�A on the crack faces and on the ligament are different
and have to be weighted.22 The numerical realisation of
the MCCI technique for singular quarter point crack tip
elements has been elaborated by Kemmer.21

3.3. The electromechanical J-integral

The well known J-integral can be extended to electro-
mechanical crack problems and computed by the
equivalent domain integral method. Here, it is used to
calculate the energy release rate G.
First, we consider a 2D crack problem, i.e. a plane

through-thickness crack in a piezoelectric body of arbi-
trary shape, see Fig. 5. The electromechanical J-integral
vector is defined as23
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Jk ¼ � lim
" !0

ð
S"

H
kj � �ijui;k þDjEk

� �
njds

¼ � lim
" !0

ð
S"

Qkjnjds ð29Þ

with the electrical enthalpy density

H ¼
1

2
�ij"ij �DiEi

� �
ð30Þ

In Eq. (29) 
kj is the unit tensor, nj is the outward
normal of the domain A and S� is the interior boundary
around the crack tip of the closed contour
� ¼ Sþ Sþ þ S" þ S�. In analogy to elastostatics, the
term Qkj is called the generalised energy momentum
tensor. For k=1, Eq. (29) yields the energy release rate,
i.e. J1=G.
For the sake of a more convenient numerical treat-

ment, Eq. (29) is transformed into an equivalent domain
integral. Therefore, a continuously differentiable
weighting function24 q is introduced, being q=1 on the
boundary S� and q=0 on the outer part of the bound-
ary S. Applying Gauss’s integral theorem, the J-integral
can be expressed in terms of a domain integral and a
contour integral over the crack faces:

Jk ¼

ð
A

Qkjq
� �

;j
dA�

ð
SþþS�

Qkjqnjds ð31Þ

The numerical realisation of the 2D case has been
treated in.25 In the 3D case, we consider a segment �s of
the crack front, surrounded by an inner tube S� and an
outer closed surface S. Now, the weighting function is a
vector qk. To calculate local values of J along the crack
front, a vector lk is introduced, see Fig. 6. It lies in the
crack plane and determines an area of virtual crack
extension, which is defined by the enveloping curve

�l sð Þ ¼ �alknk. Therefore, this method is called the vir-
tual crack extension technique. qk is 0 on the outer sur-
face S. On the inner surface S�, qk differs from 0 only
within a section �s along the crack front, in which
qk=lk. The mean value J within the section �s is

J ¼

ð
V

Qkjqk;jdVþ

ð
V

H;kjexpþbiui;k þ !VEk

� �
qkdV�

�

ð
SþþS�

Hnk � Tiui;k � !SEk

� �
qkdS

ð32Þ

where V is the enclosed volume between S� and S, i.e.
the integration domain. The local result along the crack
front is calculated from the simplified relation

J sð Þ ¼
JÐ

�slknkds
ð33Þ

For 3D crack analysis the J-integral is a scalar yield-
ing the energy release rate. The second domain integral
in Eq. (32) dispappears, if there are no volume tractions
and charges bi; !V ¼ 0ð Þ and if the material properties
are homogeneous H;k jexp¼ 0

� �
. The boundary integral

disappears if mechanical tractions and electric charges
on the crack faces vanish Ti; !S ¼ 0ð Þ and if the crack
face normals coincide with the unit vector ex2 of the
crack coordinate system nkqk ¼ 0ð Þ.

4. Fracture experiments with DCB specimens

To investigate the fracture characteristic of ferroelectric
ceramics under combined electromechanical loading,
experiments with DCB specimens have been carried out
and evaluated.26,27 The most common fracture testing
devices for smart ceramic materials are compact tension,
three/four point bending and Vickers indentation

Fig. 5. Integration paths around a crack tip for the illustration of the

J-integral.

Fig. 6. Illustration of the virtual crack extension technique for the 3D

J-integral.
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specimens.7,20,28 Here, the displacement controlled DCB
experiment has been chosen, since the crack propagation
can be kept stable for several millimeters. This enables us
to change the loading conditions during the experiment
and to observe their effect on the crack growth in situ.

4.1. Preparation of the specimen and experimental
set-up

The specimen is made of coarse-grained barium tita-
nate with an average grain size of 20 mm and a 0.5 mol%
TiO2 doping.

29 In Fig. 7 the DCB specimen is illustrated.
Its size is 4�4�17 mm. On one of the smaller faces a
notch of about 200 mm is sawn into the material with a
depth of 3 mm. The ground of the notch is prepared with
a razor blade. A radius between 10 and 15 mm is thus
accomplished facilitating the crack initiation. To avoid
crack kinking, a guiding groove is prepared parallel to
the notch along the whole length of the specimen. Its
width and depth are 500 mm and 2 mm, respectively.
For the electric loading two thin gold layers are sput-

tered onto a ground layer of chrome, guaranteeing a
uniform electric voltage U along the electrodes, which
are aligned parallel to the plane of crack propagation.
On the ligament, far enough from the crack tip to have
homogeneous fields, the electric field is orientated per-
pendicular to the crack faces having an intensity E=U/
2h. The material poling is carried out after the sintering,
applying an electric voltage at the electrodes before
falling below the Curie temperature. Notch and guiding
groove are prepared at the poled material.
The crack initiation is done mechanically, driving a

wedge of ZrO2 into the notch, see Fig. 7. The wedge is
moved by a piezoelectric actuator, showing a linear dis-
placement-over-voltage behaviour. Specimen and
actuator are fixed within a stiff frame. While the wedge
is driven continuously into the notch, the crack opening
displacement (COD) 
l is measured optically with a
precision of 0.05 mm. It is most convenient to measure 
l
at the edges of the guiding groove. The crack length a is

determined on the face opposite to the guiding groove
by a long distance microscope.

4.2. Evaluation of the experimental data

While the COD is a linear function of time, in Fig. 8
the crack length a is plotted vs. the time. In the interval
between 66 and 137 s the specimen is additionally loa-
ded by an electric field of 750 V/mm, which is directed
into the poling direction ~PP. Obviously, the electric field
slows down the crack growth. When the field is switched
off, the crack seeks equilibrium and accelerates until the
corresponding crack length is reached. The crack velo-
city plotted in Fig. 8 has been calculated by numerical
differentiation of the crack length. If the electric field on
the ligament far from the crack tip is orientated anti-
parallel to the poling direction, the electric field has the
same influence on the crack growth. This can be
explained by a repolarisation of the specimen, since the
applied electric loads are much above the coercive field
of barium titanate. Since repolarisation in ferroelectrics
is a transient process, which is well known from relaxa-
tion experiments, it takes some seconds after the field
has been switched on to obtain reproducable results.
The time-dependent character of repolarisation is also
responsible for the delay of the decrease and increase of
the crack velocity in Fig. 8.
The loading of the crack is uniquely determined by

the COD 
l, the voltage U and the crack length a. In
order to transfer the experimental results of the specific
DCB-geometry into relevant crack tip parameters, the
field intensity factors KI and KIV are calculated. Both KI

and KIV can be separated into a mechanical part
(superscript m), which is due to mechanical loads and an
electrical part (superscript e). The total field intensity
factors are

KI;IV ¼ Km
I;IV þ Ke

I;IV ð34Þ

Fig. 8. Crack length and crack velocity vs. time.

Fig. 7. Geometry and electromechanical loading conditions of the

DCB specimen.
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A formula for the calculation of Km
I is suggested in

Murakami’s handbook.30 With the notations according
to Fig. 7 it is given by

Km
I ¼

ffiffiffi
3

p
E0
l

4
ffiffiffi
h

p a

h
þ 0; 64

� �2 ð35Þ

For the plane strain state E0=E/(1��2) with Young’s
modulus E and Poisson’s ratio �. Applying Murakami’s
formula, E and � have been given average values for an
isotropic body, calculated from the elastic constants of
the anisotropic material.
Eq. (35) has been derived for a classical DCB speci-

men with rectangular cross sections of the beams and a
plane through-thickness crack. Our specimen is differ-
ent, because of the guiding groove going along with
L-shaped cross sections. Furthermore, the crack front is
curved. Therefore the crack length a, depicted in Fig. 7,
has to be interpreted as an average crack length along
the crack front. A possible deviation of Km

I calculated
from Eq. (35) is investigated applying finite element

calculations in connection with the numerical methods
presented in Section 3
Fig. 9 shows four hypothetical shapes of crack fronts.

The arrangement of the coordinates x and z is depicted
in the small sketch. Due to the guiding groove, the
ligament (hatched area) ends in the middle of the speci-
men at x=2 mm. The material constants of barium
titanate (see Appendix B) have been chosen for the cal-
culation of Km

I for the different crack front shapes. If a
simple fracture criterion Km

I ¼ KIC=const is applied,
such a shape will prevail, which shows a constant Km

I

along the crack front. Thus, the correct shape of the
crack front was found by an iteration procedure, lead-
ing to the solid line in Fig. 9. The corresponding stress
intensity factor for an exemplary COD of 
l ¼ 4mm is
Km

I =0.58 MPa m1/2. For a=4 mm, which is the crack
length measured on the surface of the specimen accord-
ing to Fig. 9, Eq. (35) yields Km

I =0.65 MPa m1/2 for the
same COD.
To avoid the effort of performing finite element cal-

culations for the evaluation of each DCB experiment,
similar iterative calculations are carried out of the kind
presented in Fig. 9 for two more crack lengths
a(x=0)=6/8 mm. By interpolation of the numerical
data a correction formula is introduced, improving the
accuracy of Murakami’s formula, Eq. (35). The cor-
rected value Km

I;cor for arbitrary crack lengths a within
the range 3.5–8.5 mm is calculated using Eq. (35) in
connection with

Km
I;cor � Km

I;mur

Km
I;cor

¼ �0; 714�e�a þ 1; 4� 10�2: ð36Þ

The relative errrors for the stress intensity factors
determined by Murakami’s formula Km

I;mur

� �
lie between

�12% and +2%.
In Fig. 10 the stress intensity factor Km

I , calculated
from the experimental data, is presented. Numerical

Fig. 9. Shape of a crack front calculated numerically applying an

iteration scheme.

Fig. 10. Fracture toughness KIC calculated from the experimental data.
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calculations proved, that Ke
I due to electrical loads can

be neglected for the material constants of barium tita-
nate compared with the Km

I induced by the mechanical
load. Therefore, according to Eq. (34) KI � Km

I . Fur-
thermore, due to the stable critical crack growth all cal-
culated fracture quantities (applied loading) equal their
critical values (material resistance). For that reason,
Fig. 10 shows the fracture toughness KIC, which is
plotted vs. the crack extension �a. The graph shows a
rising crack resistance curve (R-curve). Due to the
action of the electric field the fracture toughness increa-
ses effecting the drop of the crack velocity presented in
Fig. 8. When the electric field is switched off, KIC falls
down to the original R-curve. Again, time-dependent
repolarisation delays the change of the fracture tough-
ness. The dashed lines schematically depict the shifting
of the R–curve caused by the superposition of an elec-
tric load. The effects described here will be explained by
the micromechanical process zone model.
The electric displacement intensity factor KIV has to

be calculated numerically, following the iterative proce-
dure outlined for the determination of KI. In contrast to
the stress intensity factor, both mechanical and elec-
trical loads have an essential influence on KIV. In order
to prevent the effort of numerical calculations for each
set of measured data, dimensionless geometry functions
�m

IV and �e
IV are computed relating mechanical and elec-

trical loads, represented by 
l and U, to the intensity
factors Km

IV and Ke
IV:

KIV¼Km
IV þKe

IV¼
ffiffiffiffiffiffi
pa

p 3e33h

4a2
�m

IV

a

h

� �

lþ

	33
2h

� e
IV

a

h

� �
U

� �
ð37Þ

The piezoelectric and dielectric constants e33 and 	33,
respectively are included in Appendix B. To determine
the geometry functions, numerical calculations for dif-
ferent crack lengths a have been carried out. The results
are very well represented by the polynomials

�m
IV ¼ �8; 52�10�2 þ 3; 23�10�1

a

h

� �
� 1; 806�10�1

a

h

� �2
þ 5; 025�10�2

a

h

� �3
�7; 02�10�3

a

h

� �4
þ3; 9�10�4

a

h

� �5

�e
IV ¼ 1; 23� 0; 452

a

h

� �
þ 9; 5�10�2

a

h

� �2
� 7; 47�10�3

a

h

� �3 ð38Þ

The energy release rate can be separated into a
mechanical part Gm, accounting for the change in the
elastic energy and an electric part Ge considering the
rate of change in the electric energy. For the important
case of a perpendicular orientation of the crack faces
with respect to the poling axis Eq. (3) yields15

G ¼ Gm þ Ge

¼
1

2

K 2
I

cT
þ
K2

II

cL
þ
K2

III

cA
þ
KIKIV

e

� �
þ
1

2

KIKIV

e
�
K2

IV

	

� �
ð39Þ

In Fig. 11 the mechanical and the electromechanical
energy release rates Gm and Gem are plotted, calculated
from the experimental data. The corresponding values of
KI and KIV have been converted into the energy release
rates by Eq. (39). As the figure shows,Gm is increased due
to the electric field. Since Ge has a negative sign, the total
energy release rate is decreased.

5. Micromechanical model of the fracture process zone

To calculate the influence of ferroelectric/�elastic
domain switching within the fracture process zone on the
fracture toughness, a micromechanical model has been
developed. First, a switching criterion is applied, localising
switching events due to external loads. In a second step

Fig. 11. Mechanical and electromechanical energy release rates Gm and Gem vs. �a.
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the spontaneous change of the fracture toughness is cal-
culated, based on the shape of the switching zone.

5.1. Shape of the fracture process zone

The load induced stress and electric displacement
fields within the cracked body give rise to the switching
of domains. It is assumed that the switching is restricted
to small regions around the crack tips (small scale
switching), which will be called the process zones. This
assumption holds, if switching is only caused by the
inhomogeneous fields concentrated around a crack tip,
whereas homogeneous fields in the absence of cracks do
not change the direction of polarisation. This is usually
the case with technical actuators, since the loading
directions are not changed during service conditions.
The state of polarisation is fixed after poling and will
only be changed locally due to cracks.
The domain switching model applied here is a very

simple one. Details9,10 like domain wall motion, twin-
ning or the arrangement of domains, as well as grain
boundaries are neglected. We consider unit cells of a
tetragonal crystal lattice which are allowed to change
the local states of polarisation and strain in the material
by switching independently from neighbouring cells.
Furthermore, the model is restricted to switches in the
crack plane, therefore three variants have to be taken
into account. The c-axes of a cell can rotate 90� clock-
wise(–) or counterclockwise(+) as well as 180�. A sim-
ple switching criterion31 is applied to determine whether
switching occurs:

�ij�"ij þ Ei�Pi 5 2ECP
0 ð40Þ

The threshold value on the right hand side of Eq. (40)
approximately represents half of the area of a polarisa-
tion hysteresis with the coercive field EC and the rema-
nent polarisation P0. Assuming that stresses �ij and
electric fields Ei remain unchanged during switching, the
left hand side of Eq. (40) represents the specific switch-
ing work, taking into account the spontaneous changes
of strain

�"ij ¼ "DT �ð Þ
�1 0
0 1

� �
T �ð Þ

T

¼ �"D
cos2� sin2�
sin2� �cos2�

� �
ð41Þ

and polarisation

�Pi ¼ bP0 sin �þ ’ð Þ

�cos �þ ’ð Þ

� �
ð42Þ

b ¼

�
ffiffiffi
2

p
for þ 90�ffiffiffi

2
p

for � 90�

� 2 for � 180�
; ’ ¼

þ�=4 for þ 90�

��=4 for � 90�

þ�=2 for � 180�

8<
:

8<
:

In Eq. (41) the strain tensor is transformed from a
local lattice coordinate system to the global crack coor-
dinate system (x1, x2), see Fig. 1, by means of the
transformation matrix T �ð Þ. � is the angle between the
c-axes and x1; "D ¼ c� að Þ=a0 contains the lattice papa-
meters of the tetragonal and cubic phases. The induced
strains are equal for +90� and �90� switching and
vanish for a switch of 180�, whereas the change of
polarisation �Pi differs for the three variants.
The switching criterion Eq. (40) is used to decide, if

domain switching occurs at arbitrary locations in the
crack plane. If there are several possibilities, i.e. �90�

and 180� switching events, the one will prevail which
goes along with the maximum of irreversible switching
work. For the calculation of the switching work, results
from the closed-form solution of the Griffith crack are
used. Stresses �ij are inserted from Eq. (9), the electric
field Ei ¼ ��;i can be calculated inverting the con-
stitutive equations, Eq. (7). Using the analytical solu-
tions, local changes of the elastic anisotropy and the
direction of polarisation due to switching do not inter-
act with the fields �ij and Ei. Therefore the results are
first order approximations.
Since 180� events do not change the state of strain,

only �90� events are considered for the fracture process
zone. Fig. 12 shows three process zones around one
crack tip of a Griffith crack (see Fig. 1) for a constant
mechanical Mode-I load �1

22=150 MPa and different
electric loads. If a crack length a=10�4 m is chosen, a
stress intensity factor is obtained, which coincides with
typical fracture toughnesses of piezoelectric ceramics by
order of magnitude. In accordance with the experi-
mental conditions the poling axis was chosen perpendi-
cular to the crack faces. Following Eq. (12) the electric
loading is realised by the remote electric displacement
D1

2 . E1
2 is calculated from the inverse constitutive Eq.

Fig. 12. Fracture process zones for a mechanical Mode-I crack open-

ing and different electric loads.

A. Ricoeur, M. Kuna / Journal of the European Ceramic Society 23 (2003) 1313–1328 1323



(7). E1
1 disappears for the given loading �1

22 ;D
1
2

� �
and

poling conditions, therefore the remote electric field is
aligned perpendicular to the crack faces. Furthermore,
the crack is assumed impermeable with respect to elec-
tric fields, i.e. DC

2 ¼ 0.
In Fig. 12 the radial coordinate r is normalised with

respect to the half crack length a. Considering the
extension of the three process zones, it has to be noticed
that there is a minimum for an electrical load between
10% and 20% of the coercive field EC. The decreasing
size of the fracture process zone for low field intensities
is conditioned by the compensation of the initial electric
field due to the piezoelectric effect.

5.2. Influence of domain switching on the fracture
toughness

The spontaneous strain �"ij [Eq. (41)] is homo-
geneous within the fracture process zone, depending on
the direction of polarisation �, and vanishes outside.
Because of this strain discontinuity spontaneous trac-
tions ti are induced at the boundary of the process zone,
which can be interpreted as residual stresses. If the crack
grows by �a, see Fig. 13, the homogeneous switching
zone will be extended along the crack faces. In Fig. 13
the boundary of the original process zone is represented
schematically by the solid lines, the dashed lines depict
the extension of the switching zone for �a>0. Thus, the
width of the wake w is determined by the lateral exten-
sion of the process zone, Fig. 12. The assumption of a
homogeneous strain �"ij within the extended switching
zone requires the switched domains not to be exposed to
further switches when the crack grows.
The influence of point loads Fi on the field intensity

factors is expressed by the weight functions hiL [Eqs.
(19),(20)]. The field intensity factors �KL due to the
tractions ti are calculated by integrating along the
boundary S of the switching zone, see Fig. 13:

�KL ¼

þ
S

tihiLds ð43Þ

Eq. (43) has been used for the modelling of transfor-
mation toughening by McMeeking and Evans.32 Yang
and Zhu applied the weight function method to the cal-

culation of switch-toughening assuming uniform electric
fields33 and non-uniform fields34 neglecting both elastic
and dielectric anisotropy as well as electromechanical
field coupling.
The vector of tractions ti can be expressed in terms of

the stress tensor �ik and the outward normal nk. Apply-
ing Gauss’s integral theorem and accounting for the fact
that �ik is constant, the line integral in Eq. (43) can be
transformed into a domain integral

�KL ¼

ð
A

�ikhiLð Þ;kdA ¼

ð
A

�ikhiL;kdA ð44Þ

The total field intensity factors K
tip
L are gained from a

superposition of �KL and the contributions due to
remote loads K1

L .
A fracture criterion according to Eq. (4) has to be

determined next. It is assumed, that only mechanical
stresses are relevant on the left hand side of the criter-
ion, whereas the influence of electric fields is taken into
account in terms of �KL on the right hand side of the
equation. Restricting mechanical loads to the case of a
pure Mode-I crack opening, the fracture criterion is
assumed to be

K
tip
I ¼ K

tip
IC ¼ K1

I þ �KI ð45Þ

The intrinsic fracture toughness K
tip
IC is a material

inherent parameter for brittle cleavage fracture. �KI

supplies an additional loading or unloading of the crack
tip due to domain switching processes. According to Eq.
(45) it reduces or enhances K1

I and thus the fracture
load. Therefore it can also be interpreted as a micro-
structural contribution to the fracture toughness yield-
ing a fracture criterion

K1
I ¼ K

tip
IC � �KI ¼ K1

IC �a; �;K1
I ;K1

IV

� �
ð46Þ

The symbols in parentheses indicate that the effective
fracture toughness K1

IC depends on mechanical and
electrical crack tip fields as well as on crack growth (R-
curve) and the poling direction. In general, the left hand
side of the fracture criterion Eq. (46) is determined from
analytical or numerical calculations of stress intensity
factors accounting for piezoelectric material behaviour.
For the calculation of �KI according to Eq. (44), the

weight function for mode L � I hI
i is required. It will be

taken from Eq. (24), neglecting the deviation of the
results for isotropic and piezoelectric material behaviour
(see Fig. 3). Since for barium titanate the material ani-
sotropy seems to be of minor significance, the stress
tensor �ij is expressed in terms of the spontaneous strain
�"ij [(Eq. (41)] using Hooke’s law of isotropic elasticity:

�ij ¼
E

1þ �
�"ij þ

�

1� 2�
�"ll
ij

� �
¼

E

1þ �
�"ij ð47ÞFig. 13. Switching zone and integration contour around a crack

grown by the amount �a.
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swith Young’s modulus E and Poison’s ratio �. It was
taken into account, that the trace of the strain tensor
�"ll vanishes. Inserting Eq. (47) into Eq. (44) yields

�KI ¼
E

1þ �

ð
A

�"ijh
I
i;jdA ð48Þ

The effective fracture toughness K1
IC is calculated

from Eq. (46) inserting Eqs. (41) and (24) into Eq. (48)
and integrating in polar coordinates:

K1
IC ¼ K

tip
IC þ

3"DE

4
ffiffiffiffiffiffi
2�

p
1� �2ð Þ

�

ð�
��

ffiffiffiffiffiffiffiffiffi
R �ð Þ

p
cos 2��

7�

2

� �
� cos 2��

3�

2

� �� �
d�

ð49Þ

R(�) denotes the radial coordinate of the switching
zone boundary, see Fig. 13. The integration over � is
performed numerically, since R(�) is not available in
closed form.
In Fig. 14 the effective fracture toughness K1

IC

according to Eq. (49) is plotted vs. the crack growth �a,
which has been normalised with respect to the height of
the switching zone w (see Fig. 13). The calculations are
based on the material data of barium titanate, see
Appendix B. To estimate the influence of the micro-
structure on the fracture toughness, particularly in con-
nection with electric loading, the Griffith crack
according to Fig. 1 is exposed to a mechanical load �1

22

and electrical loads of three different intensities. The
corresponding fracture process zones are those shown in
Fig. 12. They supply the function R(�) which is inserted
into Eq. (49). The intrinsic fracture toughness K

tip
IC=2, 65

MPa m1/2 is chosen arbitrarily yielding results repre-
senting the typical range of the fracture toughness of

ferroelectric ceramics. K
tip
IC is depicted in Fig. 14 by the

solid straight line.
Fig. 14 shows a typical R-curve behaviour. The frac-

ture toughness enhances with an increasing crack length
reaching a plateau value for �a � 20 w. In the case of a
pure mechanical loading �KI has a positive sign, i.e. the
effective fracture toughness is reduced. On the other
hand, K1

IC increases if an electric field is superimposed.
In this case, the fracture process zone effects a shielding
of the crack tip. In Fig. 14 the maximum electric load
E1
2 is 50% of the coercive field. The corresponding

increase of the fracture toughness is about 25%, which
has to be considered as an upper bound for the given
E1
2 . If the electrical permeability of the crack were

taken into account, the effect would be reduced accord-
ing to Eq. (12).

6. Summary and conclusions

Fracture experiments with DCB specimens made of
barium titanate have been evaluated to investigate the
influence of electric fields on the fracture toughness of
ferroelectric/elastic ceramics. During a stable crack
growth for several millimeters, R-curves could be cal-
culated from the measured data: crack opening dis-
placement, crack length and electric potential.
Moreover, it was possible to observe the influence of
electric fields on the crack growth in situ. To evaluate
the measured data, numerical methods have been
developed, allowing for the calculation of the J-integral,
the energy release rate and the field intensity factors for
piezoelectric materials. The numerical tools can also be
applied to the fracture mechanical analysis of arbitrary
cracked bodies under electromechanical loading.
A generalisation of the classical analytical fracture

mechanics towards piezoelectric materials is presented
for the Griffith crack problem. It gives principal insight
into electrical and mechanical fields around a crack tip
and into effects of piezoelectric field coupling. Energy
release rates and field intensity factors are calculated
and their relation is derived in terms of the Irwin
matrix. Weight functions are derived allowing for the
calculation of mechanical and electrical intensity factors
for arbitrary loading conditions. This analytical foun-
dation is essential for the develpoment of numerical
methods and is the basis of the process zone model.
To evaluate the strength of piezoelectric structures, a

fracture criterion is introduced relating stress intensity
factors, gained from numerical or analytical analyses, to
a fracture toughness. The electric intensity factor KIV is
excluded from the fracture criterion. Nevertheless, the
numerical stress analysis accounts for the influence of
an electric field on the mechanical stress intensity fac-
tors. The essential effect of electric loads is included in
the fracture toughness, yet. Domain switching is

Fig. 14. Crack resistance curves (R-curves) for a mechanical Mode-I

crack opening and different electric loads. Poling and electric load

perpendicular to the crack faces.
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responsible for a shielding effect, which makes the frac-
ture toughness a function of loads, the crack growth �a
and the poling direction.
To investigate the influence of loads on the fracture

toughness, a micromechanical model of the fracture
process zone has been developed. It is based on an ana-
lytical solution of the piezoelectric Griffith crack prob-
lem and uses a simple ferroelectric/elastic domain
switching criterion. It neglects the interaction of switch-
ing in the process zone and the driving electrical and
mechanical fields. Therefore, it has to be considered as a
first order approximation. R-curves have been predicted
calculating the influence of electric loads on the fracture
toughness and quantifying the material side of the frac-
ture criterion.
To compare the calculated results with those from the

fracture experiments, the poling direction and the
remote electric field have been chosen perpendicular to
the crack faces. Since the crack tip fields are not influ-
enced by the geometric boundary conditions, results
from the Griffith crack and a cracked DCB specimen
can be compared. Figs. 14 and 10 show, that the
micromechanical model is able to predict the principal
influence of an electric field, leading to an increase of the
fracture toughness for the given configuration. A quan-
titative comparison of the results is only possible, if the
electrical permeability of the crack is taken into
account.
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Appendix A. Derivation of piezoelectric weight functions

Fracture mechanics weight functions have been
derived by Bückner35 and Rice36 for an isotropic, elastic
material. Here, weight functions for anisotropic piezo-
electric materials will be presented, which have recently
been derived by McMeeking and Ricoeur.37 We con-
sider a Griffith crack under two loading conditions, see
Fig. 1. On the one hand remote uniform loads TN ¼ �1

i2

and D1
2 are applied (subproblem 1), on the other hand

point forces and charges FN ¼ Fi;Q
� �T

are acting at xi ¼
r cos�; sin�ð Þ

T (subproblem 2). Finite electrical perme-
ability of the crack is neglected in the following,
although the theory is valid for arbitrary loads on the
crack faces. Due to linear superposition the field inten-
sity factors are [see Eq. (14)]

KM ¼
ffiffiffiffiffiffi
�a

p
TM þ hMNFN ð50Þ

In Eq. (50) the weight functions hMN have been
introduced, allowing for the calculation of K-factors
due to point loads. Remote displacements/potentials u1M
and displacements/potentials at xi due to applied loads
TN and FN can be expressed in terms of

u1M ¼ C1
MNTN þ C12

MNFN xið Þ

uM xið Þ ¼ C21
MNTN þ C 2

MNFN xið Þ

ð51Þ

whereby C1
MN and C2

MN are the compliances of the sub-
problems 1 and 2, respectively. C12

MN ¼ C21
MN are the cross

compliances of both subproblems, which are identical
according to Betti’s theorem of reciprocity. The total
potential energy � for the superposition of both load
cases can be introduced as the difference of the internal
energy U of the cracked body and the external loads:

� TN;FN; að Þ ¼ U� TNu
1
N � FN xið ÞuN xið Þ ð52Þ

Accounting for Eq. (51), the total potential energy is a
function of the loads TN, FN and the crack length l=2a.
A Legendre transformation between the variables �
and U shows, that Eq. (52) is valid only, if the partial
derivatives

uN xið Þ ¼ �
@� TN;FN; að Þ

@FN
;

u1N ¼ �
@� TN;FN; að Þ

@TN

ð53Þ

exist. The energy release rate was defined in Eq. (2).
Taking into account that there are two crack tips, the
energy release rate is

G ¼ �
1

2

@� TN;FN; að Þ

@a
ð54Þ

Differentiating Eq. (54) with respect to FN and insert-
ing Eq. (53) yields

@G

@FN
¼ �

1

2

@2� TN;FN; að Þ

@a@FN
¼
1

2

@UN xið Þ

@a
ð55Þ

On the other hand the energy release rate can be
related to field intensity factors according to Eq. (3).
Furthermore, taking into account Eq. (50) leads to

G ¼
1

2

ffiffiffiffiffiffi
�a

p
TM þ hMNFN

� �
YMK

ffiffiffiffiffiffi
�a

p
TK þ hKLFL

� �
ð56Þ

Differentiating Eq. (56) with respect to FN as well as
uM(xi) in Eq. (51) with respect to the half crack length a
and subsequently inserting both equations into Eq. (55)
yields
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2
ffiffiffiffiffiffi
�a

p
TN þ hNKFK

� �
YNLhLM

¼
dC12

MN

da
TN þ

dC2
MN

da
FN xið Þ ð57Þ

The goal is to calculate weight functions hLM from
known solutions of the subproblem 1. Therefore, the
point loads FN in Eq. (57) will be chosen zero, which is
possible since weight functions are a property of the
geometry of the boundary value problem and do not
depend on loading conditions. For FN=0 Eq. (57) yields

hLN ¼
1

2
ffiffiffiffiffiffi
�a

p Y�1
LM

dC12
MN

da
ð58Þ

According to Eq. (51) the compliances C12
MN are equal

to the displacements and potentials uM at xi due to unit
stresses and electric displacements TN at infinity. In
connection with Eq. (11) it is obvious that

C12
MN ¼ R AM�N�N z2� � a2

� �1
2�z�

h in o
ð59Þ

The term which is linear in z� can be omitted, since it
describes a homogeneous field which is not influenced
by the crack. The derivation with respect to a has to be
performed in a crack tip coordinate system accounting
for the transformation x̂1 ¼ x1 þ a. Inserting Eq. (59)
into Eq. (58) finally gives the piezoelectric weight func-
tions Eq. (19).

Appendix B. Material constants of BaTiO3

The constitutive relations for barium titanate with the
positive x2-axis as poling axis can be written in con-
tracted notations for the global coordinate system. The
indices of the material constants cij; eij; 	ij are notated
with respect to the material axes xi, whereby x3 corres-
ponds to the poling axis.

�11
�22
�33
�23
�31
�12

0
BBBBBB@

1
CCCCCCA

¼

c11 c13 c12 0 0 0
c13 c33 c13 0 0 0
c12 c13 c11 0 0 0
0 0 0 c44 0 0

0 0 0 0
c11 � c12

2
0

0 0 0 0 0 c44

0
BBBBBBB@

1
CCCCCCCA

�

u1;1
u2;2
u3;3
u2;3
u3;1
u1;2

0
BBBBBB@

1
CCCCCCA

þ

0 e31 0
0 e33 0
0 e31 0
0 0 e15
0 0 0
e15 0 0

0
BBBBBB@

1
CCCCCCA

�;1
�;2
�;3

0
@

1
A

D1

D2

D3

0
@

1
A ¼

0 0 0 0 0 e15
e31 e33 e31 0 0 0
0 0 0 e15 0 0

0
@

1
A

u1;1
u2;2
u3;3
u2;3
u3;1
u1;2

0
BBBBBB@

1
CCCCCCA

�

	11 0 0
0 	33 0
0 0 	11

0
@

1
A �;1

�;2

�;3

0
@

1
A

with the elastic constants [N/m2]:

c11 ¼ 16:6� 1010; c12 ¼ 7:66� 1010; c13 ¼ 7:75� 1010

c33 ¼ 16:2� 1010; c44 ¼ 4:29� 1010

the piezoelectric constants [C/m2]:

e15 ¼ 11:6; e31 ¼ �4:4; e33 ¼ 18:6

and the dielectric constants [C/(Vm)]:

	11 ¼ 14:343� 10�9; 	33 ¼ 16:823� 10�9

The relationships between the contracted and expan-
ded notations are given as

C1111 ¼ C2222 ¼ c11; C3333 ¼ c33; C1122 ¼ c12;

C1133 ¼ C2233 ¼ c13; C2323 ¼ C3131 ¼ c44

C1212 ¼
c11 � c12

2
; e311 ¼ e322 ¼ e31; e333 ¼ e33;

e113 ¼ e323 ¼ e15

Other orientations of the poling axis can be realized
applying a transformation of coordinates.

Coercive field intensity: 200 V/mm
Remanent polarisation: 0.25 N/(Vm)

average elastic constants:

E ¼ 1:05� 105MPa; � ¼ 0:315

constants of the Irwin matrix:

YMN ¼

1=cL 0 0 0
0 1=cT 0 1=e
0 0 1=cA 0
0 1=e 0 �1=	

0
BB@

1
CCA

cL=68.42, cT=72.24, cA=44.75 GPa; e=112.57 C/
m2, 	=18.8.10�9 C/(V m).
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